Hyperbolic Four-manifolds with One Cusp

نویسنده

  • ALEXANDER KOLPAKOV
چکیده

We introduce an algorithm which transforms every four-dimensional cubulation into a cusped finite-volume hyperbolic four-manifold. Combinatorially distinct cubulations give rise to topologically distinct manifolds. Using this algorithm we construct the first examples of finite-volume hyperbolic four-manifolds with one cusp. More generally, we show that the number of k-cusped hyperbolic four-manifolds with volume 6 V grows like C lnV for any fixed k. As a corollary, we deduce that the 3-torus bounds geometrically a hyperbolic manifold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Families Index for Manifolds with Hyperbolic Cusp Singularities

Manifolds with fibered hyperbolic cusp metrics include hyperbolic manifolds with cusps and locally symmetric spaces of Q-rank one. We extend Vaillant’s treatment of Dirac-type operators associated to these metrics by weaking the hypotheses on the boundary families through the use of Fredholm perturbations as in the family index theorem of Melrose and Piazza and by treating the index of families...

متن کامل

Arithmetic cusp shapes are dense

In this article we verify an orbifold version of a conjecture of Nimershiem from 1998. Namely, for every flat n–manifold M, we show that the set of similarity classes of flat metrics on M which occur as a cusp cross-section of a hyperbolic (n+1)–orbifold is dense in the space of similarity classes of flat metrics on M. The set used for density is precisely the set of those classes which arise i...

متن کامل

Nonexistence of Cusp Cross-section of One-cusped Complete Complex Hyperbolic Manifolds Ii

Long and Reid have shown that some compact flat 3-manifold cannot be diffeomorphic to a cusp cross-section of any complete finite volume 1-cusped hyperbolic 4-manifold. Similar to the flat case, we give a negative answer that there exists a 3-dimensional closed Heisenberg infranilmanifold whose diffeomorphism class cannot be arisen as a cusp cross-section of any complete finite volume 1-cusped ...

متن کامل

Commensurability and virtual fibration for graph manifolds

Two manifolds are commensurable if they have diffeomorphic covers. We would like invariants that distinguish manifolds up to commensurability. A collection of such commensurability invariants is complete if it always distinguishes non-commensurable manifolds. Commensurability invariants of hyperbolic 3-manifolds are discussed in [NRe]. The two main ones are the invariant trace field and the inv...

متن کامل

Dehn filling of cusped hyperbolic 3-manifolds with geodesic boundary

We define for each g > 2 and k > 0 a set Mg,k of orientable hyperbolic 3manifolds with k toric cusps and a connected totally geodesic boundary of genus g. Manifolds in Mg,k have Matveev complexity g+k and Heegaard genus g+1, and their homology, volume, and Turaev-Viro invariants depend only on g and k. In addition, they do not contain closed essential surfaces. The cardinality of Mg,k for a fix...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013